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1 SELF-TUNING METHODS FOR MULTIPLE-CONTROLLER SYSTEMS

ofYick Man Chan,Ph.D
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1981

The optimization of stochastic systems with unknown parameters and

multiple decision-makers or controllers each having his own objective is

.:,, .considered. Based on a centralized information pattern, steady-state

solutions are obtained for the stochastic adaptive Nash game and Leader-

, Follower game problems. These adaptive solutions, after a judicious

transformation, resemble closely the implicit self-tuning solution for the

single-controller single-objective case, and thus preserve the salient

and advantageous features of self-tuning methods-simplicity and easy

implementation. In addition, due to this close resemblance, convergence

results for the game problems are established by extending the convergence

result from the single-controller single-objective case. The decentralized

stochastic adaptive Nash game problem is also considered. Two explicit

self-tuning type algorithms are proposed. The first algorithm is an ad hoe

I [constraint on the policy form while the second one is based on extension

from static Nash game theory. Simulation results indicate all these self-

tuning methods are capable of stabilizing a system along targeted paths.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Many systems we encounter in our daily routines have these dominant

features: i) unknown or partial knowledge of system dynamics; ii) presence

of multiple decision-makers or controllers each of whom has his different

objective; iii) presence of unmeasurable disturbances. Examples of such

system include distributed industrial systems, power and energy systems,

transportation systems, environmental systems, biological systems and

socio-economic systems, just to name a few. Optimization of such systems

falls naturally into the framework of stochastic adaptive games.

A dynamic game is a system characterized by the presence of multiple

decision-makers. The theory of games first attained its formalism due

to the publication of the book "Theory of Games and Economic Behavior"

by [43). A majority of the work for game theory has been done for systems

I ith known parameters [20, 21). In this thesis, we propose an adaptive

procedure to tackle the Same problem when we have no information or just

partial knowledge of the system parameters. This particular adaptive

algorithm, which incorporates a minimum variance control strategy and a

least squares identification scheme, is the Self-Tuning Strategy [1, 5,

45). The reason for using the Self-Tuning Strategy in tackling the

Stochastic Adaptive Game problem is primarily due to the simplicity of

the algorithm and proven success in industrial applications [2, 6).
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1.2 Self-Tuning Strategy

The Self-Tuning Strategy is basically a suboptimal control scheme

because the design of the control signal does not take into consideration
-- %0!0. 0"

the effect of the control signal on the estimation of the system dynamics.

In the design of stochastic adaptive controllers, the role of the control

signal is two-fold: i) the attainment of the control objective; ii) the

identification of the system parameters or dynamics [4, 8, 9, 56]. This

dual nature of the control signal was first pointed out in [22].

Controllers which take into account of the dual nature of the control

system are classified as dual controllers. By this definition, the Self-

Tuning Strategy is a non-dual type algorithm because it approaches the

estimation problem and control problem independently and assumes no

interaction exists between the two problems. Even though the Self-Tuning

Strategy is a non-dual adaptive control method, it has received wide

attention and generated a substantial amount of results on both the

theoretical level and practical applications primarily due to its

simplicity and ease of implementation. The advent of microprocessor,

* ,., with its falling cost and rising computing power, has allowed a prototype

portable self-tuner to be constructed and tested on site for various

industrial processes [19]. These self-tuners are particularly appealing

under the following situations:

i) frequent manual retuning needed for the traditional three

term PID (Proportional, Integral, Derivative) control scheme;

ii) frequent changes in set point for linearized system dynamics;

iii) presence of noise in the system;

iv) presence of slowly -ime-varying system parameters.-.



We hope che proven applications of the self-tuner will provide us

with a practical tool for solving the stochastic adaptive game problem

and ultimately enable us to implement, with ease, the theory of games to

the numerous systems we encounter daily.

1.3 Thesis Outline

In this thesis, we will utilize the self-tuning method to solve the

stochastic adaptive Nash game and Stackelberg game problems. Our

objective is to seek steady state game solutions that can be practically

implemented with ease. Indeed, by restricting the cost functions of

each decision-maker to a certain class, we obtain solutions for the game

problem, which resembles closely, after certain transformation, the

asolution of the self-tuning control problem with only one decision-maker.

This close resemblance implies that the computation for the game solution

",,. can be carried out using similar methods that are used for the self-tuners.

Microprocessor implementation, naturally, is a desirable goal.

" Since our approach is based on the self-tuning principle, we will

. briefly review the various aspects of this theory in Chapter 2. We will

concentrate on the original self-tuning regulator [6] and a generalized

self-tuning method proposed in C16, 17]. Extension and new convergence

result for the method in [16, 17] are also presented in this chapter.

In Chapters 3 and 4, we will define and formulate the stochastic

adaptive Nash game and Stackelberg game problems respectively. We will

assume a centralized information pattern, that is, the game problems will

be solved with the assumption that every decision-maker has the same

,o ,
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input-output data about the system. Convergence for the game problem

will be shown by extending the convergence results of the self-tuning

controller with one decision-maker.

In Chapter 5, decentralized stochastic adaptive Nash games will be

considered. Specifically, we will consider a "one-step-delay information

sharing pattern". By restricting the cost functions for the decision-

makers to single-stage, an adaptive games solution is obtained by

extending the results of static games with known parameters. We also

obtain similar adaptive solution by a straightforward constraint on the

form of each decision-maker's control law. Simulation results using

these procedures are presented.

.'I
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SCHAPTER 2

SELF- TUNING PRINCIPLE

2.1 Introduction

In order to control processes where there are unknown parameters and

unmeasurable disturbances, the self-tuning method has been proposed to

overcome these problems. In this chapter, we will review the underlying

!*' fidea of self-tuning for the single decision-maker single criterion case.

New convergence result and extension are also presented.

In Section 2.2, the Self-Tuning Regulator (STR) of [5] will be

reviewed. The STR basically combines a minimum variance control law and

a least squares estimator to deal with the unknown parameter and noisy

system. A variation of the STR, the Self-Tuning Controller (STC) in

[16, 17, 18, 25, 26], will be reviewed and extended in Section 2.3.

Properties of these controllers are discussed.

In Section 2.4, convergence results for the STR will be presented

• '- and we will show how the convergence results for the STR can be carried

over to the STC. A remark that is worth mentioning at this point is that

a similar procedure will be used in obtaining convergence results for the

'" ,:" game problems. In other words, we will show how the convergence results
ao.

- for the STR can be carried over to the Nash game and Stackelberg problems.

Finally, in Section 2.5, an example based on a paper making machine

";* E-" in [14] is simulated using the two different self-tuners.

.%



2.2 Self-Tuning Regulator (STR)

The process to be regulated is formuated in an input-output model

form. The objective of the control action is to minimize the output

variances of the process. To review the STR concept, we will first

present the minimum variance strategy for the system assuming complete

knowledge of the system parameters. Then, the adaptive minimum variance

control law to deal with unknown system parameters is presented. Further

details can be found in [6, 14].

2.2.1 Minimum Variance Strategy

The process to be controlled is governed by

A(q 1)y(t) - B(q' )u(t-k-1) + C(q I)e(t) , k > 0 (2.1)

where q -1 denotes the backward shift operator, k is time delay, y Is the

output vector, u is the input vector, and £e(t)) is a sequence of in-

dependent, identically distributed random vectors with zero mean and finite

covariance. The vectors y, u, and e are all the same dimension p. The

polynomial matrices A(z), B(z), and C(z) are all of dimension p X p

given by

n
A(z) - I +A1z + . ..+Anz ,(2.2a)

1 n l
-- B0 non-singular (2.2b)B)= 0  1 l . Bn-lZ

C(z) " I +Cz .,. C n  (2.2c)

with det B(z) and det C(z) all have their zeros strictly outside the unit

circle.

D4
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The objective of the control action is to minimize, given the input-

output data up to time t, with respect to u(t), a cost function J given

by

J = Ey (t+k+l)QY(t+k+l)l (2.3)

L where E denotes the expectation operation and Q is a p X p symmetric

positive semidefinite matrix. The minimum variance strategy minimizes J

over all admissible controls u(t), specifically, all u(t) which consists

. of functions of all current and past outputs y(t),y(t-1),... and past

inputs u(t-1),u(t-2),....

It can be shown that the minimum variance strategy is given by

G(q )y(t) + F(q ')B(q ')u(t) 0 (2.4)

t where F(z) and G(z) satisfy

4% C(z) - A(z)F(z) + z k+G(z) (2.5a)

F(z)G(z) - G(z)F(z) (2.5b)

det F(z) = det F(z), F(0) I I (2.5c)

and F(z), G(z) are polynomial matrices given by

.... k( . a

F(z) - I + F z + ... + FkZ (2.6a)

n-l
G(z) - Go + Glz + ... + Gn..z (2.6b)

Derivation of the minimum variance strategy can be found in 1:14].

The closed loop system with this strategy being applied becomes

C(q ')y(t) - C(q ')F(q ')e(t) (2.7)

p ' ,.
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where

NF(z)C(z) - (z)F(z) *(2.8)

Since det F(z) - det F(z), det C(z) - det C(z). Thus, the closed loop

system is stable as det C(z) is assumed to have all zeros strictly out-

side the unit circle.

The control error with this strategy is asymptotically given by

y(t) - F(q'1 )e(t) (2.9)

which is a moving average of order k of the noise e(t).

2,2.2 Regulator for System with Unknown Parameters

In order to control the process given by (2.1) with unknown para-

meters, the following model is used for representation of the process

y(t) + a(ql )y(t-k-l) - S(q 1)u(t-k-l) + c(t) (2.10)

.:2 where

47(z) - a + a" z+.. + L. z ' (2.11a)

89(z) " 80 + &lz + "'" + 8+k-lzn+kl- (2.11b)

and C(t) is the error to be minimized in the least squares sense.

The minimum variance strategy for the process (2.10) is given by

B(q ')u(t) - 0(q 1)y(t) . (2.12)

For the STR, at each instance of time, it performs a least squares

estimation for the model given by (2.10). The estimates 0(z) and a(z)

for 0(z) and 8(z) respectively are then substituted into (2.12) to obtain
'..
_.,
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the optimal control u(t). The certainty equivalence principle is invoked

during the control calculation procedure as we have assumed the optimal

control signal can be obtained even with the estimates substituting the

true parameters. That is, we have assumed

BA -l~t - 47q)~)(2.13)

will yield the same optimal control as (2.4).

In the adaptive control literature, this method is classified as an
-,

implicit method or direct method since the parameters of the system are

Inot estimated explicitly (thus implicit method) and that the parameters

for the regulator are estimated directly (thus direct method). If an

K' explicit estimation of the system parameters is being done, that is, the

estimates A(z), 3(z), and C(z) are obtained for the process (2.1), poly-

nomial matrix factorizations and computations will have to be carried

K out before arriving at the optimal control signal u(t). The direct

method here allows simpler and faster computations for the optimal control.

To estimate the parameters of the regulator recursively, the

following least squares procedure may be used [3, 6). introduce the para-

meter matrix e given by

e E1 B2  .. 3 n-l (2.14)
V. p

.1
'-:'.-..., *',!.- -. 'e * .e3."'" *.- --.-.- I (2.14
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The following recursions are carried out at each step of time to estimate

e for i - 12..p

e 1(t) - *(t-1) + K(t-l)[y i(t) - ~(t-k-l)epit-.)] (2.15)

K(t-I) = P(t-l)1T(t-k-1)1 + 1j(t-k-l)P(t-l)'q T (t-k-1)] "t  (2.16)

". P(t) -P(t-1) - K(t-1) [1 + 'n(t-k-1)P(t-l1 T (t-k-1)K T (t-1) (2.17)

4 with y1 being the i-th component of y and

1(t-k) (tk) t-k-l-n)uT(t-k-1) ... uT(t-k-l-n

(2.18)

where nG - n-1 and n5 - n+k-l. It can be observed that if the initial

values of P(t) is the same for all of the p steps of the estimation at

each step of time, the corresponding gain matrix K(t) will remain constant

at each step of time for all of the parameter vectors 9 .( - 1,2,...,p).

In this manner, considerable computational efforts can be saved. Another

remark is that other types of least squares estimation schemes may also

be used to deal with slowly-varying parameters or to enhance numerical

stability of the estimation computations.

Results for convergence of this adaptive algorithm have been reported

[27, 28, 38, 39). In [38, 39), convergence of optimal control, based on

convergence of estimates, is guaranteed for single input single output

system if the system input-output remains bounded and if a certain positive

real condition of the noise dynamic c(z) is satisfied. In [27, 28], the

boundedness of the system variable is removed. Further discussion will

be presented in Section 2.4. What should be kept in mind at this point



is that these convergence results developed for the STR will be used to

determine convergence, first of the self-tuning controller (STC) which

is presented in the next section, and eventually the stochastic adaptive

"' :game problems.

' ' r 2.3 Self-Tuning Controller (STC)

The single input single output STC in [17] is basically the same as

the STR except for a penalty on the control signal in the cost function.

*. KThe presence of a penalty may reduce the excessive control signal

magnitude that is common for the STR. It may also offer a simpler method

* to deal with nonminimum phase processes [25, 29]. We will generalize the

:K" " single input single output (SISO) case to multiple input multiple output

(MIMO) case here. See also [33) for another approach.

The cost function for the STC is given by

J - EyT(t+k+l)Qy(t+k+l) + uT(t)Ru(t)) (2.19)

where Q is a symnetric positive semidefinite matrix and R is a symnetric

positive definite matrix.

To facilitate our analysis in the latter part of the report, we will

S',consider the process under consideration to be governed by

&(q_ 1 )y(t) - B(q' )u(t-k-l) + C(q 1)e(t) (2.20)

where k is known time delay and a(z) is a scalar polynomial and B(z),

C(z) are polynomial matrices given by

a(z) - 1 + a1z + ... + anzn (2.21a)
I. .J'
I*?p .

L . ' * ,", ", ' "j -Z ' .,.-, ' . " .. ' ' -.. ' ' "" ''' '' .,.6'""-'"''''' , , ", , "'
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B(z) - B0 + B1z + B ml (2.21b)

C()- 1 z + +BC z (21)

and C(z) has all its zeros outside the unit circle. The process given by

-. (2.1) can readily be converted to (2.20) as shown in Appendix A.

2.3.1 Controller Design with Known Parameters

We will, again, first consider the system with known parameters and

derive a strategy that minimizes (2.19) and then the adaptive algorithm

for unkncn parameters will be presented in the next section.

Theorem 2.1. The control law that minimizes (2.19) for the system

(2.20) satisfies

C1 (q-')C(q 1)y(t) + [MF(qt )C(q 1)B(q- ) + 'E(ql )H]u(t) - 0 (2.22)

where

M - B Q (2.23a)

H - R (2.23b)

CZ) - adjoint C(z) (2.23c)

c(z) - det C(z) (2.23d)

" G(z) - GO0 + G 1z + + G n-l z n -l (23ein 0  G~ + ... +G z(2.23.)

F(z) - I + F z + ... Fkzk (2.23f)

and G(z), F(z) satisfies

C(z) - a(z)F(z) + zk+lG(z) (2.24)

*°

'-N -' ,,T , " -:-"- "- " ",v,.-.-.,.. .,.-... . . ..- .,-..-., . .. . . . . . .... - - -..-,
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Proof. Premultiply (2.20) by z F(z)C~z) to obtain

-1 -1)~ -1)~~ l F-1 -1.~q -1Fq)q)aq)tklF(q )q)eq ) ~q )u(t)

+ F(q- )C(q ')e(t+k+l)

Using (2.24), the above equation becomes

-1~ -q~ lG(ql 1]~-)y(t+k+l)

-F(q- )e.<q- )B(q- )u(t) + F(q- )C(q- )C(q- )e(t+k+l)

or

(q- )Ey(t+k+l) -F(q- )e(t9k+1.)]

-G(q- )C(q -1)y(t) + F(q- )C~q l)B(q- )u(t) (2.25)

where the fact c(z)I - C(z)eo(z) has been used. Denote

* -1
-~ y (t+k+l It) - y(t+k+l) - F(q- )e(t+k+l) ,(2.26)

that is, y* is the least squares optimal predictor of y given the data

-1up to time t, which is uncorretated with F(q )e(t+k+l). Combining

(2.25) and (2.26) yields

cj(q )y*(t+k+l jt) -G(q- ),<q- )y(t)

+ F(q )C~q )B(q )u(t) .(2.27)

Substituting (2.26) into the cost function (2.19) yields

Li
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+:" J =E(EF(q-l )e(t+k+l) ]TQ CF(q' 1)e(t+k+l) ]l

+ E([y* T(t+k+l It)Qy*(t k+l lt1 + u T(t)Ru(t) ) (2.28)

P.,

~The first term of (2.28) is related to future noise covariance which

." cannot be optimized. Hence, the optimization is concentrated on the

esecond term. Assuming the existence ofthnesarcodin
{...-.,: u(tl

"% for a miniwAmm yields

3_.. - 0

0

au(t) T T
o Er (t+k+llt) + Rtu(t)

or

t0 MY*(t+k+ut) + Hu(t) (2.29)

SPremultiply (2.29) by c(q' 1l and combining the resulting equation with

,-, (2.27), we have

MG(q'1I)C(q-'ly(t) + [MF(q' 1)C(q'l1)B(q' 1) + j(q' )HIu(t) - 0

as stated in (2.22). Q.E.D.

eA remark that is noteworthy is that in the S eis an

absence of penalty on control, the optimal control is obtained by setting
the predictor y to zero. This setting of the least squares optimal

~predictor to zero to compute the optimal control is the underlying factor

that enables the parameters for the STR to be directly estimated in the

adaptive situation. It will be mst convenient if a similar direct method

can be used for the STC. To accomplish this ultimate goal, we continue

slw - 1t"'"% It) 4- R "-t
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our analysis on the optimal control equation (2.22) for known parameters

to see if a suitable optimal least squares predictor function can be

;: ~ obtained.

Define a function 0 such that

V, ' 0*(t+k+l jt) - My (t+k+l It) + Hu(t) (2.30)

where M and H are as defined in Theorem 2.1. From (2.29), the optimal

control is obtained by setting 0* to zero; thus, 0* seems to be a possible

candidate for the predictor function.

Let the function 0 be defined by

0(t+k+l) - My(t+k+l) + Hu(t) . (2.31)

Equations (2.20), (2.27), (2.30) and (2.31) yields the following system:

a(q )0(t) - (MB(q 1) + Ra(q 1))u(t-k-1)

+ MC(q' 1 ) e(t) (2.32)

- 1 * - 1c(q')0 (t+k+l It) - M(q' )(q ')y(t)

- [ (-) -1 - . ( -l
+ MF(q[ )C(q )B(q ) +(q )Hu(t) (2.33)

0(t-+l) - * (t+k+lIt) MF(q- )e(t+k+l) (2.34)

since y (t+k+llt) is uncorrelated with F(q )e(t+k+l); thus, 0(t+k+lt)

and MF(q"')e(t+k+l) are also uncorrelated, which implies * is the least

squares optimal predictor for 0. Furthermore if we define a new cost

function I given by

I- E0 T (t+k+1)0(t+k4l)1 (2.35)

Pi. *.,'

_ " '; -' ' " ",." ,," ".' ,"/ ': 7°.'ri' '.: " " :':-' '.''. .. '., .'", ". ' / .... i . . , ,. -". ,.." .'"".- - 2"-", ,"",
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then the minimum variance strategy for the system governed by (2.32) with

cost function (2.35) is obtained by setting the optimal predictor 0 to

zero.

To summarize, the original system given by

a(q 1)y(t) - B(q 1)u(t-k-l) + C(q 1)e(t)

*(ql)y*(t+k+l t) - G(q 1 )C(q- )y(t) + F(q' )C<q)B(q' )u(t)

y(t+k+l) - y (t+k+l lt) - F(q )e(t+k+l)

has been transformed to an equivalent system

a(q )0(t) (MB(q) + Ha(q ))u(t-k-l) + MC(q )e(t)

c(q- )0*(t+k+l It) - MG(q 1)?(q )y(t)

+ £MF(q 1)Cq- 1)B(q' ) + c(q 1)H~u(t)

0(t+k+l) - 0*(t+k+l It) - m1(q'l)e(t+k+l)

with

"(t) - My(t) + Hu(t-k-l)

An additional advantage to be gained in transforming the original

system into a system which is similar to a STR structure is the

possibility of applying directly the convergence results for the STR to

0; the STC. In the latter part of the report, our convergence analysis for

the game problem will also be based on this approach of transforming the

original game problem to a system governed by (2.32-2.34).

,o
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b

The closed-loop system with (2.22) being applied becomes

)(q-)(M + a(q'l)H' 1(q'))y(t)

-- 1 l--1 -l -- c(q')(MF(q l) + HB- (q')C(q' ))e(t) . (2.36)

"<. (q.( .36

Since c(z) is assumed to have all its roots outside the unit circle, the

stability of the system is thus dependent on the roots of the system

det(MB(z) + Ha(z)) - 0 . (2.37)

Hence by choosing M and/or H properly, the system can be stabilized even

with a B(z) that does not have all its zeros outside the unit disc.

2.3.2 Controller for System with Unknown Parameters

In order to control the process given by (2.20) with unknown para-

meters, the following model is used for representation of the system

,.,c -l ytkl -1
.(t) + '(q- )y(t-k-l) - 13(q )u(t-k-l) + e(t) (2.38)

where 0 is defined in (2.31) and

Lq - +  7 z  +  +' + 7 z n l

a(z) - 20 + /1z + "'" + -zm+k-l

and c(t) is the error to be minimized in the least squares sense.

The certainty equivalent minimum variance control law for (2.38) is

* given by

(q)u(t) (q)y(t) (2.39)

6,'

[/*, + ~~~~~~~.. ...... .'". .. ................''-'.-
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where 1(z) and 4(z) denote the least squares estimates for B(z) and

a(z) respectively.

The following recursive estimation scheme may be used [27, 28].

Introduce a parameter matrix 0 as defined in (2.14). Then at each step

of time, the following recursions with k 0 are carried out to estimate

. for i =1,2,...,p:

:, 9(t ) = ei (t - ) + ritl - (t -1)[ht 0 M(t-1)yt -1)] (2.40)

Tr ri(t-1) - ri~t-2) + 11 1 t-l)li~t-1) , ri(o) - 1 (2.41)

where Th is given by

IT M = 1-yT M ...-yT(t-n+l)u T(t) uT(t-M+1) 2.42)

and a> 0 is a constant. See [27) for general delay k 0 0.

Using 0 as the input to the controller, it is possible to avoid some

of the complex matrix calculations and determine the controller parameters

directly. However, this may present some problem since knowledge of the

B0 parameter is required in computing the signal 0. In the present case

for a single decision-maker, this may not be extremely annoying since an

arbitrary choice for the matrix M results only in a change of the penalty

on the output variances. Certainly, one method to overcome the problem

is to estimate the system parameters explicitly and go through all the

matrix computations. We will, however, at this point assume that the B,

parameter in the process is known as this does not appear to be a very

stringent requirement in practical applications.
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It should be noted that similar derivation of the self-tuning

controller strategy is carried out in [33] using different system

representations. However, in our approach, by adhering to the system

representation (2.20), convergence and stability results in [273 can be

readily established for the STC as shown in the next section.

2.4 Convergence Analysis for Self-Tuning

It has been shown in [38, 39] for the SISO STR that the estimated

parameters of the regulator will converge and yield the optimal control

based on true system parameters if the following conditions are satisfied:

i) the sequences [y(t) , (u(t)) are uniformly bounded;

ii)~- th oynma is strictly positive real; and
c(q')

iii) there is no factor common to A(z), B(z) and C(z) in (2.1).

Similar analysis for the MIMO case has been reported in [14].

In another approach using Martingale theory in [27], convergence of

parameters is not explicitly required and the boundedness of the system

input-output is removed. Their result is stated in the following theorem.

Theorem 2.2 [27, Theorem 5.1]. Consider the cost function (2.3)

and the system (2.20) which satisfies the following assumptions:

( -i) the number of inputs p equals the number of outputs;

ii) the delay k - 0;

iii) upper bounds for the orders of the scalar polynomials appearing

in (a(q), B(q), C(q ) are known;
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iv) det B(z) # 0 Iz I < 1.
det C(z) # 0 IzI 1 I ;

v) (c(z) - 1) is strictly positive real,

then with probability one,

(1) sup I <
N 1

su £ 1u(t) 112 <(2) NupIl

1N 2
(3) im i E y21(O )  ri , i 1,2,...,p
N N 1

where rii is the minimum mean square error for any causal linear feedback
(including the one designed using true system parameters), if the STR

algorithm in Section (2.2.2) is applied to the system.

Notice the presence of Z, which is present in (2.40), allows a

certain degree of freedom to ensure condition v) is satisfied.

The result of Theorem 2.2 will be applied to the equivalent trans-

formed system when the STC algorithm is used. Hence, the process will be

governed by (2.32) with the cost function (2.35). By modifying certain

assumptions on the system, we see that the input-output will remain

bounded and the control error of the transformed system will achieve its

global minimum. Hence, we have the following theorem.

Theorem 2.3. Consider the cost function (2.19) and the transformed

system (2.32) which satisfies assumptions i), ii), v) of Theorem 2.2 and

the following conditions:

iii) upper bounds for the order of the scalar polynomials appearing
1 1 a l 1

in (a(q- ) B(q) + Ha(q , C(q- are known;

4;il... . ....
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iv) det(MB(z) + Ha(z)) # 0 Iz I < 1

I det C(z) 0 0 z I < ( ;

vi) B0 is known.

If the STC algorithm in Section 2.3.2 is applied to the system, then

-, * the input-output will remain bounded and the output error of O(t) will

-."'.... .. achieve a minimum achievable by any causal linear feedback.

Theorem 2.3 will be used in showing convergence of the game problems

that is considered in the latter part of the report.

2.5 Simulation Example

-:'! To illustrate some of the features of the STR and STC, an example

based on a paper making machine is simulated and evaluated. See [14]

for details of the model.

The plant is governed by

y(t) + Aly(t-l) - B 0u(t-l) + e(t)

- where

-0.99101 8.80512 x 103

A1
i.. "+-0.80610 -0.77089

-0.89889 -4.59328 x 10]

0 19.390 0.88052O0,2 0o.35
Ee(t)T(t30.35 7.6

" ,N, ,, ,, ',,,,.,'..; :,". . .,'- ,......,.2 + ' ' .-. '+" ..', ," ; -. . . , , +" . , . '". - . .-..-.- +
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The cost function J is given by

J - E(yT(t+l)Qy(t+l) + uT (t)Ru(t) )

with

Q,

0- for the STR

R
.05 0 for the STC

All initial parameters except are set to zero. S is set to the

identity matrix to prevent control saturation.

Self-Tuning Reulator: The STR algorithm estimates recursively the

parameters of the model

y(t) + 6oy(t-1) - BOu(t-1) + C(t)

and the control is given by

The input-output of a typical run will be presented and discussed later.

Self-Tuning Controller: The STC algorithm estimates recursively the

parameters of the model

0(t) + 40y(t-l) - Bu(t-l) + C(t)

and the control is given by

4'
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u~t M 8 L7%y(t)

The input to the controller 0(t) is given by

0(t) - y(t) + M'lHu(t-l)

T T -
with M - B0Q, H - R . Notice since M exists in this case, our operation

in premultiplying (2.31) by M 1 is justified. Such transformation of 0

will not affect the stabilizing property of the algorithm.

Comparisons of STR and STC: In order to compare the different

features of the two self-tuners, we have carried out the simulation in

two parts. We will first assume B0 is known, thus 0 and M are known.

The input-output of a typical run is shown in Figures 2.la-2.4a for the

STR and the corresponding trajectories for the STC are shown in

. Figures 2.lb-2.4b. In the second part, B0 is unknown and M is

arbitrarily chosen as the identity matrix for the STC. The input-output

of a typical run (with other conditions the same as the first part) is

shown in Figures 2.5a-2.8a for the STR and the corresponding trajectories

for the STC is shown in Figures 2.5b-2.8b.

The simulation results indicate that both self-tuners indeed perform

satisfactorily regardless of the knowledge of BO. However, from Figure 2.3

and Figure 2.4, we notice that u1 and u2 are substantially reduced

especially during start up if the STC is used. The prevention of

excessive control action is attained in this instance. From Figures 2.5-

2.8, it can be observed again the reduction of excessive control and thus

excessive output variance is achieved even with unknown B0. The STC does
L0*

seem to have an edge in terms of smoother control action. However, we



'i .l. v v. I '

24

-,.,. - - - " -"

9.... .,- . .

o."Figure 2.1a. Time response of yl using STR with known BO .
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Figure 2.1b. Time response of y1 using STC with known B0 .
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Figure 2.2a. Time response of y2 using STR with known B0

'I a- - -7 M 1W 19 M

Figure 2.2b. Time response of y2 using STC with known B0.
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Figure 2.3a. Time response of u1 using STR with known B0.
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Figure 2.3b. Time response of u1 using STC with known B0
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Figure 2.5a.. Time response of y~ using STR with unknown B.
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Figure 2.5b. Time response of y1 using STC with unknown B0.
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Figure 2.6a. Time response of y2 using STh with unknown Bb
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Figure 2.6b. Time response of Y2 using STC with unknown B0 .
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Figure 2.7b. Time response of u1 using STR with unknown B.
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Figure 2.8a. Time response of u2 using STR with unknown B0
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Figure 2.8b. Time response of u2 using STC with unknown B0.
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should take caution not to penalize the control signal excessively as

-. ! this may result in inadequate probing of the system to yield estimates

that can stabilize the system.

'S"..

4

i'U
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* CHAPTER 3

STOCHASTIC ADAPTIVE NASH GAMES

3.1 Introduction

* ~In this chapter we will consider the stochastic adaptive Nash game

problem using the self-tuning controller (STC) approach. Nash games were

Sfirst introduced and investigated in a static framework in [42]. They

* 'were later extended to the dynamic case [53, 543. The decision-makers in

a Nash game simultaneously minimize their respective cost functions with

respect to their individual controls. The resulting optimal strategy is

called the Nash equilibrium strategy. This strategy has the property

•~-that if one decision-maker deviates from it, he cannot improve his per-

formance. However, it may be possible for some or all of the decision-

makers to improve their performance when more than one decision-maker

- deviates from the equilibrium strategy. That is, the Nash equilibrium

strategy is secure against unilateral deviation but not necessarily

". collusion. The Nash game framework, thus, is very appealing to large

scale systems or distributed industrial systems where there are a host of

noncooperative decision-makers or controllers each trying to minimize his

own cost functional.

Definition 3.1. A strategy set (UU2,...,uN] is a Nash equilibrium

*strategy set if

Ji(ul,...,ui lui,ui+l,.. ,1
" .... -<~~~i-1 31u,.,i~ui~ l,,..,N Y ,,., (3.1)

J U .. '
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for all admissible controls ui of decision-maker i; and i is the cost

function for decision-maker i for which that decision-maker is trying to

minimize.

As in stochastic optimal control problems, there are different

solution concepts, namely, open-loop and closed-loop solutions, to the

Nash game problem [53]. In general, the open-loop and closed-loop

solution of a game problem is different. However, by restricting the cost

function of the decision-maker to single-stage, the distinction between

*the different types of solution cease to exist as we have essentially

reduced the problem to a static framework. Moreover, the restriction also

enables us to seek steady state solutions to the game problem using the

self-tuning approach.

In Section 3.2, formulation of the Nash game problem is presented.

The solution to the stochastic adaptive Nash game problem will be dis-

cussed in Section 3.3. It turns out that the game solution closely

resembles, after a judicious transformation, a minimum variance control

problem with one decision-maker. It is this resemblance that enables the

.4 ~ established results for the STR to be applied to the game problem.

Finally, in Section 3.4, a simulation study on an economic system is

presented to illustrate the proposed adaptive solution.

3.2 Problem Formulation

Previously, dynamic games have mostly been analyzed for system in.°

state-space representation. We will formulate the game problem in the

input-output form so that the self-tuning algorithm can readily be applied.

Consider a system given by the equations

*L*



U
35

x(t+l) -Fx(t) + G1u1(t) + G2u2 (t) + ... G GNUN(t)

+ Ke(t) (3.2)

y(t) - Tx(t) + e(t) (3.3)

- ,where each ui, which is of dimension mi, represents a controller that

tries to minimize a cost function given by

J = E(Cy(t+k+l) - Yr(t+k+l))TQi[Y(t+k+l) - yr(t+k+l)

+ [u(t) u(t-l)]TR iu(t) - u(t-l)), (3.4)

~~i - ,,.,
j

where Qi is a symmetric positive semidefinite matrix and yr is the

desired value of y. The matrix R i is a symmetric matrix with its ii-th

block, denoted by (Ri)ii, being positive definite. The vector u is

formed by stacking all the ui's (i - 1,2,...,N) in a column. The reason

*for penalizing the term Cu(t) - u(t-1)] is to avoid finding the reference

control signal u that corresponds to a nonzero yr. The state vector

x(t) is n-dimensional. The input u(t), output y(t) and the noise sequence
-N

(e(t)) are all of dimension p (that is, p - Z m ). Furthermore,

(e(t)] is assumed to be an independent equally distributed zero mean

random vector with finite covariance. Let G - EG G then (3.2)

becomes

x(t+l) - Fx(t) + Gu(t) + Ke(t) (3.5)

dIt can be shown that (3.5) and (3.3) can be transformed to an input-

output representation [27), which is given by

-.;

:.4 -".' ' ','.-'.'" -' -' - .":, -:"'?""''" "+ " " ' " " " " " " ', ";
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a(q 1)y(t) = B(q l)u(t-k-1) + C(q' )e(t) , k > 0 (3.6)

where k is a known time delay and a(z) is the scalar characteristic poly-

nomial for the system (3.5) and a(z), B(z), C(z) are in the form as given

in (2.21).

To allow more flexibility, we will consider the system to be

governed by

a(q )y(t) - B(q )u(t-k-l) + C(q )e(t) + D (3.7)

where D is a p-dimensional offset vector.

3.3 Self-Tuning Nash Game

The self-tuning approach is adopted to seek steady state solutions

for the stochastic adaptive Nash game problem. As in the usual analysis

for such an approach, the control strategy is first derived assuming all

the parameters are known, then an adaptive procedure is incorporated to

deal with unknown parameters.

3.3.1 N-Person Nash Equilibrium Strategy

The derivation of the Nash equilibrium strategy is very similar to

that of the STC. We will summarize the result in a theorem.

Theorem 3.1. Let L represent the i-th column block (of dimension

p X ml) of the p X p matrix L. The Nash Equilibrium Strategy u* (t) for

the system (3.7) with cost functions (3.4) is given by

0 -.%>. . - ' ". . .. - - ",0. . ., ", . . . .. ".••-0", " :" - - .i,:'-,- _ ""'' '.:: - . . -" ,-: -', ". -? ''':
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MG(q- )(q ')y(t) + [MF(q 1l)C~q ')B(q )

+ lu*(- + Mq(q- )C<q ')D

E (q tl )MY r (t+k+l) -0 (3.8)

with

*C-(z) - adjoint C(z) (3. 9a)

c(z) - det C(z) (3.9b)

G(z) - G 0+ G 1z +.+ G i-i - (3.9c)

UF(z) -I + F1 z + .. + F zk(3.9d)

T
B 0  Ql

M (3.9e)

T

(N)1

and G(z), F(z) satisfy the following identity

k+l
C(z) -a(z)F(z) + z G(z) .( 3 .9g)

Proof. See Appendix B.

Notice that (3.8) is just a system of linear equations, which is

extremely convenient in the computational aspects over other game solutions
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that usually involves Riccati equations. Another observation of (3.8) is

that it closely resembles the optimal control law for the STC given in

.- Theorem 2.1 except for the definition of the matrices M and H. Hence,

the original system (3.7) with y(t) as output can be transformed into an

equivalent system with O(t) as output as in the case for the STC.

Let the function 0(t) be defined by

-(t) _ M(y(t) _ yr(t)) + H(u(t-k-l) - u(t-k-2)) . (3.10)

The equivalent transformed system is then given by

a(q- )0(t) - (MB(q " ) + (l-q 1)a(ql )H)u(t-k-l)
4.,

+ MC(q )e(t) + MD - a(q )My (t) . (3.11)

"" 'Furthermore, as in the STC, by defining a new cost function I given by

I - Et0T(t+k+l)0(t+k+l)3 , (3.12)

it is possible to obtain the Nash strategy (3.8) by considering the trans-

formed system (3.11) with the cost function (3.12) as a control problem

with only one decision-maker. That is, instead of optimizing Ji with

respect to ui(t) for the i-th decision-maker, every decision-maker can

determine the Nash strategy (3.8) by optimizing I with respect to u(t).

Another interesting property of the solution (3.8) is that if the

penalty on control in the J 's is zero, and assuming the matrix M is non-

singular, the resulting Nash strategy is equivalent to the MIMO minimum

* . variance strategy developed for the STR in which there is only one

decision-maker. Moreover, premultiplying (3.8) by M"1 when H is zero,
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we see that this Nash strategy is independent of the weighting matrices

Q (i - 1,2,...,N). Essentially, the game flavor of the problem will not

arise if every decision-maker does not penalize the control effort. On

the other hand, even when there are penalties on controls, and if all the

Op Qi's and Ri's are identical for i - 1,2,...,N, the Nash strategy

collapses to the optimal strategy of the STC in Theorem 2.1. Situations

in which every controller has the same cost functional are analyzed in

the realm of team theory [48].

3.3.2 N-Person Self-Tuning Nash Equilibrium Strategy

Basically, the same approach utilized in the MIMO STC will be used

to deal with unknown parameters. However, further restrictions have to

be placed on each decision-maker. From this point on, we assume every

=: controller agrees to use the same estimation scheme and identical initial

* 4conditions. These restrictions ensure every controller has the same

.::, model for the system and rid us of the complications of multimodeling.

With these restrictions, each decision-maker is essentially a complete

STC by himself. That is, there are N identical STC doing identical

computations to compute the Nash equilibrium strategy. In other words,

"- S in order to arrive at the Nash strategy for the system (3.7), every

.7. decision-maker uses the following model for representation of the process

, p...(t) - 6(q )y(t-k-l) + 8(q )u(t-k-l) + h

.+ (ql)yr(t) + ¢(t) (3.13)

.oq- 
...

with 0(t) defined in (3.10) and

n-I- a + + ' z (3.14a)
0 . ---

A... * . . - . . . . . . . . . . . .
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8(z) " 80 + 9. z + + 'Sn+k-lz m+ k' l  (3.14b)

",.(z) - + Lz + ... nz ,n_ degree c(z) (3.14c)

5 - . (3. 14d)

and C(t) is the error to be minimized in the least squares sense.

The certainty equivalent Nash equilibrium strategy for the system

(3.13) is given by

-1 - 11.0 - /(q )u(t) + 8F(q' )y(t) + S(q- )yr(t+k+l) + 5 (3.15)

where W denotes the estimates of W. The parameters can be estimated

using (2.40) and (2.41) with

a T

,t)t) u- yT(t-l)...yr (t+k+l)... 13 (3.16)

and the parameter matrix e defined by

e - a1  p (3.17)

a.J

oe a.

•-- - -- r -- c '--r a-- . . a . . . ' -% - * - . .
a -w-.~* a- a* *. a . '
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The following recursions (for k - 0) are then carried out at each step

of time:

ri(t-l) i1to t1
4,., :,. i t t

(3.18)

"r r(t-1) - r (t-2) + T(t-l)Tji(t-l )  , (O) 1 (3.19)

3.3.3 Convergence

Convergence of the estimated prediction 0 to the true prediction 0

can be analyzed using Theorem 2.3. By defining the matrix M and H

according to (3.9e) and (3.9f) respectively, we can apply Theorem 2.3 to
4, .

N.! show convergence of the game problem, which is stated in the following

44 theorem.

Theorem 3.2. Consider the cost functions Ji (i - 1,2,...,N) in

(3.4) for the system (3.13) which is assumed to satisfy condition i),

ii) and v) of Theorem 2.3 and the following conditions:

iii) upper bounds for the order of all the scalar polynomials

appearing in (a(ql), (MB(q " ) + (l-q'l)a(q- )H), C(q' 1

are known;

iv) det(MB(z) + ($-z)a(z)H) 0 0 , IzI < 1

. det C(z) 0 0 Iz <1

U with M and H as defined in (3.9).

If the Self-Tuning Nash algorithm (3.15)-(3.19) is applied to the

system, then the system input-output will remain bounded and the prediction

error for Oft) will tend to its global minimum with probability one.
Ione

I I; -'. .,. - 4--.--%~4~4* ...
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3.4 Simulation Example

During recent years, optimal control theory has been widely used in

the field of economic analysis [7, 10, 31, 46, 55]. Optimal control theory

seems to provide an extremely versatile tool for the economist to deter-

mine tradeoffs between policies, economic stabilization policies, long

term investment policies and other functions alike. Hence, the Nash

strategy proposed here is applied to a rather simple minded quarterly

economic model with two inputs and two outputs to illustrate the ability

of the algorithm to stabilize the system. The two outputs are the con-

sumption expenditure C(t) and private investment I(t). The two inputs

are government expenditure G(t) and money supply M(t). All variables are

measured in constant 1958 dollars. Further details can be found in [15).

In the United States, the formulation of the monetary policy is in the

domain of the Federal Reserve System (FRS) while the formulation of the

fiscal policy is primarily in the hands of the Congress and the President

[47). There have been many instances during which the two "controllers"

hold different objectives. This certainly falls naturally into a game

framework. We will assume that the two controllers (FRS and the federal

government) want to stabilize this system along certain target paths or

growth patterns. However, they have different views on where the emphasis

should be placed, which is manifested by having different cost functionals.

Let J and J2 be the cost functions of the federal government (Congress

and the President) and FRS respectively. The Ji's are given by

- E([y(t+l) - yr(t+l)]T Qi[y(t+l) - yr(t+l)]

+ [u(t) -- T u(t-)]

-. . .... . . ..
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where y(t)- [C(t) I(t)]T, u(t)-nt(t) M(t)]T and yr is the desired output.

We assume yr (t) grows at an annual rate of 4% from yr(0 ) - £300 75]T .

The system is governed by

a(q' )y(t) - B(q )u(t-l) + Ce(t) + D

where the numerical values of a(z), B(z), C(z), and D are listed in

Appendix C. The weighting matrices and the covariance of the noise is

also included in Appendix C. We assume B0 is known during the simulation.

Simulation results indicate that the system can indeed be stabilized

along the targeted growth path. The input-output time responses of aU

typical run are shown in Figures 3.1-3.4. Figure 3.1b and Figure 3.2b

shows the output responses with expanded ordinate after the algorithm has

settled. We notice that there are extreme fluctuations during the start

up. In practical applications, these may not be permitted and can be

avoided by starting with initial estimates that yield a satisfactory

response. See [18), for instance, for practical considerations.

I
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Figure 3.2a. Time response of Y2for Nash game.
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Figure 3.2b. Time response of Y2for Nash game with expanded ordinate.
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-1

Figure 3.3. Time response of u1 for Nash game.

u 
2

Figure 3.4. Tim response of u2for Nash gavae.
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CHAPTER 4

STOCHASTIC ADAPTIVE STACKELBERG GAMES

4.1 Introduction

S .. In this chapter, the self-tuning principle will be called upon to

solve the stochastic adaptive Stackelberg game problem. The Stackelberg

game, or the Leader-Follower (L-F) game, was first introduced in the con-

j ' text of a static economic problem with two decision-makers [52]. It has

-* been extended to dynamic cases in [49, 50, 51). In the L-F game, one or

* more group of decision-makers, which will be called the follower. For

information than the other group, which is called the follower. For

instance, the leader knows the cost function of the follower but the

follower may not know the leader's cost function. Equipped with the know-

ledge of the follower's cost function (thus the possible rational decision

- -of the follower), the leader wiLl perform his optimization taking into

account the possible reaction of the follower. In the L-F game, the

.: " " leader will announce his strategy first or act first. The follower then

$y - . performs his optimization subject to his knowledge of the leader's action;

that is, he is reacting to the leader's decision. Even though the

computation for the leader may be more complicated than the Nash game

., case, he will do no worse, in terms of cost, and in general will do better

- " using the L-F strategy rather than the Nash strategy. In general, however,

nothing can be stated regarding the cost for the follower compared to his

cost in the Nash game case. The L-F Same framework is particularly

appealing to optimization of hierarchical or multilevel systems where the

follower or lower level controllers may have limited access to certain

,4
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information or they may have limited computing capability. In an

• .economic system, for example, the government may be the leader over the

business community because of its vast data base. Another example is in

distributed control system in which the local process control computers

may have limited computing capacity compared to the central computer.

There are a host of variations in the L-F game. For instance, the

group of leader and/or follower may elect to use the Nash strategy

instead of conforming to one single objective among their respective

group. There may also be N groups of decision-makers with a hierarchial

structure such that the higher level controller is a leader to the

succeeding controller [13, 24]. In this report, we will concentrate on

2-Person Stackelberg games with DM1 denoting the leader and DH2 denoting

the follower.

Definition 4.1. Let DM1 the leader, choose control u1 E U1 and DM2,

£ the follower, choose control u2 E U2 where U1 and U are the sets of

admissible controls. The cost function associated with DM is J

(i - 1,2). Assume there exists a mapping T: U1 - U2. For each control

chosen by DH1, DM2 chooses - T(ul) such that

J J2(uT,u2u , V u2 E U2  • (4.1)

The leader, DM1 , chooses u 1 such that

. (u ) < J (U1,T(ul)) , V u, E U1 • (4.2)

The strategy pair (ul, u2  T(u1 )) is called the Stackelberg equilibrium

strategy pair.

i* * * * i q * i , " I + - - i•++I• "I' - ++++• + + +i- +
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As in the Nash game problem, there are different solution concepts

to the L-F game. The solutions to open-loop, feedback, and closed-loop

L-F games are in general different [21, 23, 44]. However, if we restrict

the cost functions of the decision-makers to single-stage, we reduce the

problem to a static one and circumvent the problem of different types of

solution.

In Section 4.2, the L-F game problem will be formulated. The

solution to the stochastic adaptive Stackelberg game problem is presented

in Section 4.3. The same basic approach used in the analysis for the Nash

game problem is found to be quite appropriate. A simulation example of

an economic system is presented in Section 4.4.

4.2 Problem Formulation

Consider a system given by an input-output description

a(q 1)y(t) - B(ql )u(t-k-l) + C(q 1)e(t) + D , k > 0 (4.3)

where a(z), B(z), C(z) and D are as defined in (3.7). The vector

u(t) _ CU(t)u2(t) T with u1 being the control of the leader and u2 being

the control of the follower. The output y(t), input u(t), and noise

sequence (e(t)) are all of dimension p. (e(t)) is assumed to be an in-

dependently equally distributed zero mean random vector with finite co-

variance. The cost function associated with the i-th decision-maker is

given by

Ji " EtCy(t+k+l) - yr(t k+)] Cy(t+k+) - yr (t+k+l)]

+ Cu(t) - u(t-1)3Ti[u(t) - u(t-l)]) , i - 1,2 (4.4)
',
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where y is the desired output of the system and Q and Ri are symmetric

positive semidefinite matrices. The reason for the penalty of control

J- change between each time step is, as mentioned before, to avoid the

problem of calculating the reference control signal associated with non-

zero reference output.

4.3 Self-Tuning Leader-Follower Game

The L-F equilibrium strategy will first be derived for the system

assuming all the parameters are known. Then an adaptive scheme similar

to the one used in the Nash game problem is presented to deal with unknown

parameters. For ease of derivation, we will limit the controls u1 and u2

to be scalar valued. That is, we will consider a two input two output

system in this chapter. The results, however, can easily be extended to

vector valued controls.

4.3.1 Two-Person Leader-Follower Equilibrium Strategy

The derivation of the L-F equilibrium strategy from the necessary

conditions is basically the same as that of the STC except for certain

modifications. The result is sumarized in the following theorem.

Theorem 4.1. Let LM represent the i-th column of a matrix L and let

(R) denote the ij-th entry of the matrix R. The Leader-Follower
ij

equilibrium strategy u*(t) (u*(t)u *(t)) T for the system (4.3) with cost

functions (4.4) is given by

MG(q'1)(?,q'1)y(t ) + [M(q -1 )?(q-1 )B(q 1

+ (l-q )c(q )H]u (t) + MF(q )C.(q )D

- -1 r (-(q )My (t+k+l) - 0 (4.5)

. 4':"' ', / ", .. .: '_ *>... ,. . . '., 2 ._, -.._ ... ....,, ,.- . - .* .. .* *'. . . * *' '.% *.
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- with

. z) - adjoint C(z) (4.6a)

" (z) det C(z) (4.6b)

G(z) - G0 + G1 z + + G n  l  (4.6c)

F(z) - 1 + F1z + + Fkzk  (4.6d)

M k B k B (2)
-- 1 2' 20 1 0 A0

- . U:' )

IH I - k R T( k R (2)H- TZ (4.6f)

where

T
CNki -B (2 )QBM1  + (R~i (4.6g)

A and G(z), F(z) satisfy

~ C.~ k+C(z) - a(z)F(z) + z kG(z) (4.7)

Proof. See Appendix D.

It can readily be observed that the L-F strategy resembles the Nash

V strategy (3.8) and STC strategy (2.22) in every aspect except for the

definition of the matrices M and H. Another remark is that if there has

" Cl been no penalty on the control (H - 0) and assuming that M is non-singular,

the L-F strategy will reduce to the minimum variance strategy for the STR

V j*tg
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and this resulting L-F strategy is independent of the weights Qi

(i 1,2). That is, the game aspects of the problem will not arise if

there is no penalty on the control action.

Notice that the leader will have to solve (4.5) to obtain the L-F

strategy. The follower, on the other hand, will just need to go through

part of (4.5) to obtain u2 since the leader acts first and thus u1 is

known to the follower. Also, notice that the follower only needs to

know M2 and H2 in order to solve u2. The fact that the follower may not

know the leader's cost function is again very transparent in this instance.

To utilize the self-tuning approach, the original system is trans-

formed to an equivalent system as in the Nash game analysis. Let O(t) be

defined by

0(t) _ M(y(t) - yr(t)) + H(u(t-k-l) - u(t-k-2)) . (4.8)

The transformed system in 0 becomes

a(ql )0(t) - ( )B(q"1 + (1-q 1)a(q' )H)u(t-k-1)

+ MC(q )e(t) + MD - a(q )My (t) . (4.9)

If we define a cost function I given by

I E((t+k+)0(t+k+l) , (4.10)

it is possible, as in the Nash game case, to obtain the L-F equilibrium

strategy by considering the transformed system as a minimum variance

acontrol problem with one decision-maker.
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4.3.2 Two-Person Self-Tuning Stackelberg Strategy

In order to deal with unknown parameters, we assume all the decision-

makers agree to use the same estimation scheme and identical initial

conditions. The parameter B0 is assumed to be known so that the matrix

M can be computed.

To control the process (4.3) with cost functions given by (4.4),

* , each decision-maker will use the following model as representation of the

system

"(t) - c7(q l)y(t-k-1) + B(q')u(t-k-l)

+ F(q' )yr(t) + & + e(t) (4.11)

where 4(z), B(z), 3(z) and .Oare as defined in (3.14) and c(t) is the

error to be minimized in the least squares sense.

The certainty equivalent L-F strategy u is then given by
'S°,

0 B(q' )u (t) + a(q 1)y(t) + 3(q l)yr(t+k+l) + 8 (4.12)

where L denotes the estimate for L. The parameters can be estimated using

7. stochastic approximation scheme given by (3.16)-(3.19).

To further appreciate the structure in the self-tuning L-F game, we

will go into some interesting properties of this adaptive procedure.

. r. The leader in the game will have to estimate all the controller parameters

in order to compute u . On the other hand, the follower, who acts after

the leader has acted, has a simpler estimation computation. Specifically,

the follower's estimation computation is part of the leader's computations.

Let us elaborate by further considering the case where u1 and u2 are
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r
scalar-valued. For simplicity, assume D - 0 and y . 0. Let 4(z), 1(z),

0(t) be given by

" ll(z) a12 (z)

47(z) - (4.13a)
Sa21(z) a22(z)

b ll (z) b12 (z)

15(z) - (4. 13b)
.(t) L [b21(z) b2 2 (z] r3b

O ) 0(t) " , 4 y(t) + R1u(t-k-1) . (4.14)

0( 2 (t) M2

From (4.14) 02 (t) is given by

02 (t) - M2y(t) + H2u(t-k-1) (4.15)

and H2 , H2 are functions of the follower's cost function only. The

follower, in fact, only requires 02 for his controller. Consider the

following equation which is part of (4.11)

02 (t+k+l) - C2 (t+k+l) - a2 1 (q -l )yl(t) + a22(q41)y2(t)

+ b21 (q I)u1 (t) + b22 (q 1)u2 (t)

(4.16)

The follower's optimal strategy u2, with u available after the leader's

action, is given by

b22 (q )u2 (t) - -a2 1(q )yl(t) - a 2 2 (q )Y2 (t)

- b21(q ')u*(t) . (4.17)
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Hence, the follower will save some computational effort compared to the

led4.3.3 Conversence

Convergence results for the L-F game problem is exactly the same as

stated in Theorem 3.2 except for the change in the definition of the

matrices M and H.

Theorem 4.2. Let the matrices M and H be defined by (4.6e) and

(4.6f) respectively and assume the conditions on the system in Theorem 3.2

are satisfied. If the self-tuning L-F strategy (4.12) is applied to the

system (4.3), then the system input-output will remain bounded and the

prediction error for 0(t) will tend to its global minimum achievable by

any causal linear feedback with probability one.

4.4 Simulation Study

The economic model presented in Section 3.4 is again used to study

the performance of the self-tuning strategy. In this case, we assume the

federal government (Congress and the President) to be the leader and the

FRS as the follower. The same and Ri used in the Nash game simulation

are used in this case.

Simulation results indicate that the algorithm can indeed stabilize

the system along the targeted 17. quarterly growth. The input-output time

responses of a typical run are shown in Figures 4.1-4.4. Figure 4.lb and

Figure 4.2b shows the output responses with expanded ordinate after the

algorithm has settled. Again, there are extreme fluctuations during the

start up period as the controller is trying to learn the characteristics
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of the process. These excessive fluctuations may be undesirable and

may be reduced as discussed earlier in Section 3.4.
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CHAPTER 5

DECENTRALIZED STOCHASTIC ADAPTIVE NASH GAMES

5.1 introduction

In this chapter, an explicit self-tuning method is utilized to

develop an algorithm for systems with unknown parameters and multiple

controllers each, besides having a different objective, has a different

set of information about the system. This decentralized system framework

is suitable for analyzing large scale interconnected systems in which the

communication and/or computational costs involved may prohibit the imple-

mentation of a centralized control policy. Decentralized information

among decision-makers was first studied in the framework of static team

theory in [481 and was further extended in Ell, 12, 34, 35, 36).

In this report, we will confine our analysis to Two-Person de-

centralized stochastic adaptive Nash games with an information structure

termed "one-step-delay sharing pattern" [57]. We will restrict the cost

function of each decision-maker to a single-stage, thus, turning the

dynamic situation into a static Nash game framework. In Section 5.2, the

formulation of the decentralized Nash game problem is presented. In

Section 5.3, we approach the known parameter problem by a straightforward

constraint on the form of the control policy as done similarly for the

single controller problem in [32, 37, 41]. In Section 5.4, another

approach is used to tackle the known parameter decentralized game problem.

Specifically, we extend results of static Nash games in [11, 12] to our

problem.
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To deal with the unknown parameter case, a recursive estimator is

used to determine the system parameters explicitly. We force the

certainty equivalence condition upon the system and substitute the true

* parameters by the estimates into the control law. The proposed algorithm

can be classified as an explicit self-tuning strategy as the systems

parameters are estimated explicitly and then manipulated to determine the

%; , optimal policy. Even though convergence for this procedure is not

guaranteed, our simulation studies for an economic system, which is

presented in Section 5.5, do show that the algorithm is capable of

stabilizing the system along a desired path asymptotically. Furthermore,

our simulation results indicate that the two different decentralized

approaches will generate the same optimal policy hinting that the two

methods may actually be equivalent.

5.2 Problem Formulation

Consider a system with multiple decision-makers each has ui

(i 1 l,2,...,N) as his control. The system is governed by

y(t+l) + a(q )y(t) + B(q')u(t) + e(t+l) + D (5.1)

where u(t) is formed by stacking up all the ui(t). The dimension of the

i-th component of y, y., is assumed to be of the same dimension as ui.

" The sequences (y(t)), (u(t)), (e(t)) are all of dimension p. The

4 ,. disturbance sequence (e(t)) is an independent identically distributed zero

mean while noise with finite convariance given by Ete(t)eT(t)) - W. B(z)

is a matrix polynomial and a(z) is a scalar polynomial as given by

p.'
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n
a a(z) a a0 + a 1z + .. + a nz n (.2

n
B(z) nB0 +B 1 z ... +Bnz (5.3)

The D in (5.1) is an p-dimensional offset vector with i-th row block Di,

which is also the same dimension as ui . A steady state decentralized Nash

equilibrium strategy for the system is to be sought. The cost function of

each decision-maker is given by

10 E(Er It+1) yrt+l))T [lE,) yr(t+l)]

+ [ui(t) - ui(t-1)]TRi UL(t) - ui(t-,)

i - 1,2,...,N (5.4)

where Qi is symmetric positive semidefinite, R is symmetric positive

definite and yr is the desired value of the i-th output y

In our problem, at every step of time t, the i-th decision-maker is

assumed to have: i) yi(t) and past outputs y(t-1),y(t-2),... ; ii) past

inputs u(t-1),u(t-2),... as his information. This class of information

pattern is called "one-step-delay sharing pattern" [57]. The i-th decision-

maker attempts, under this information structure, to minimize (5.4) with

respect to ui(t) with the assumption that the other decision-makers use

the Nash equilibrium strategy as well. In this report, the number of

dccision-makers is limited to two. However, the algorithm can easily be

generated for more than two controllers once the methodology of the

solution is understood.

To facilitate our analysis, the cost functional (5.4) will be de-

composed to a form in which only the part that directly affects the
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optimization result is kept. It can be shown by straightforward sub-

stitution that (5.4) can be written in the following form:

0 TT
- E u i(t)D ii u i(t) + 2U i(t)D iju j(t)

+ 2&0yT (t)Qi(B0 )iiui(t) + 2[&(qyit

+ B1 (q- )u i(t) + B(q- )u i(t)

+Di - (t+)]TQL(BO 
(5.5)t

+ 2[u T(t-l)R ui(0)

+ terms not involving ui(t) ,i~j -1,2

with

Dii (Bo i±Qi(Bo)ii + i(56

ii - (B0)iiQi(B0)ij (5.7)

and ( ijdenotes the ij-th block of the zero-th order element, B9Of

the matrix polynomial B(z). Bij(z) denotes the ij-th block of B(z) with

(B~jtaken out, that is,

B(z) - Bij(z) -(Bo)i. (5.8)

The scalar polynomial Z(z) is similarly defined as

Z(z) - a(z) -a0* (5.9)

We will let J denote the "active" part of J in (5.5), that is, the part

that involves ui(t). Hence, we have

0 + terms not involving ui(t) .(5.10)

'4
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.*5.3 Constrained Decentralized Nash Game

Consider a system governed by (5.1) in which each controller has a

cost function given by

'Ji E uT(t)Diiui(t) + 2uT(t)Dijuj(t)

+ 2aoyT(t)Q (BO)iiui(t) + 2[a(q )y1 (t)

+ (q- )ui(t) + Bij(q ')uj(t) (5.11)

+ Di - Yr(t+l)]TQi(Bo)iiui(t)

+ 2uT(t-l)Riui(t)) , ij - 1,2

Let the matrix Ci be defined by

Ci - aoQi(BO)ii , (5.12)

and let the function xi be deiined'by

Tl i(q l1,...,:.xi(t) (B )U M i
") 1 (qL )y(t) + i )u1q t

+ Bij(q )u(t) + Di " y (t+l))

+ Riui(t-1) , i - 1,2 . (5.13)

Notice that at time t, the value of xi(t) is known as it does not depend

on any future data.

Now we can rewrite Ji as

- E~u(t)D iui(t) + 2u T ( t ) Di j u
j ( t ) + 2yT(t)Cu i (t)

+ T , 2x .' 1,2.14)2x(t)u1 (t)) j(.4

TW~
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'., The constrained decentralized Nash equilibrium strategy for the

system (5.1) with cost functional Ji in (5.14) is first presented in

Section 5.3.1 assuming all the system parameters are known. Then, the

,.j certainty equivalence is invoked heuristically and a stochastic

approximation type estimation scheme is used to obtain estimates that

are substituted into the optimal policy in place of the true parameters.

5.3.1 Nash Game with Constrained Policy

Let the control ui of the i-th decision-maker be of dimension mi,

I - 1,2. Thus, the associated output measurement y1 for the i-th

controller is also m -dimensional. The i-th decision-maker tries to

minimize J with respect to u1 which is of the form

u (t) - G Y1 (t) + gi , I - 1,2 (5.15)

Gi ~i g1  m-dmnsoa

where G is a m ×mi matrix and gi is a mi-dimensional vector. The

, constrained policy is stated in the following theorem.

p Theorem 5.1. Let the characteristic root of a matrix A with maximum

absolute value be denoted by X (A), then the condition

1,m (D11D12D22D21)I < 1 (5.16)

is sufficient for the system (5.1) with cost functions (5.14) to admit a

unique Nash solution. The gains Gi, gi of (5.15) satisfy the following

DiWijW-j1 -1
G -D D D D GWjiWiiW~

ii i + ii ii jl ,

-D Di + D iiDijD iiCJWjIW4 ii i,j -1,2 (5.17)
ij
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+ D1iD- g -D DLG (t) + DijGj~j(t)

+ CT (t) + x (t)3 , Lj 1,2 (5.18)

where YL denotes the expectation of YL and Wij is the ij-th block of theiii

noise covariance matrix W.

Proof. See Appendix E.

Notice that the gain GL is independent on a0 , BO, QL and RL only.

Hence, in the case when ao, B0 parameters are known, once G is determined,

it does not require further computation.

5.3.2 Self-TunLng Constrained Decentralized Nash Game

In order to obtain the Nash strategy for the system with unknown

parameters, we propose an ad hoc method of certainty equivalence. In this

procedure we will assume W and B0 are known to avoid possibilities of

non-exlstence of solutions for (5.17). Furthermore, we will allow a unit

delay in the estimation scheme, that is, at time t, the system parameter

*estimates used for the control computation are based on past input-output

... data only. In addition, we assume each decision-maker uses the same

estimation scheme and initial conditions so that the problem of multi-

modelling can be avoided.

The recursive procedure in [40], which is a stochastic approximation

type algorithm, can be used to estimate the system parameters explicitly.

", Introduce the parameter matrix 9 defined by

9'.
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a

e - [e 1 e2 ... e) - ']n (5.19)

where each O1 (- 0,,2,...,n) is a diagonal matrix. The following

recursions are carried out at each step of time to estimate ej,

jt) ej (t-1) + r M) j(t-l)e(t-l1 (.20)

t_, + T(t) -r(t) - r j(t-l)) + ()T (t-1)tt rj(t-1)3 (5.21)

r j0)"j

with y(t) being a decreasing sequence in t. Notice that the assumptions

a0 , B0 are known and will lead to the setting of 0 a a01 and So - BO.

A block diagram of the closed-loop system is shown in Figure 5.1.

Convergence of the estimator will certainly lead to the convergence

of the Nash strategy. The condition for convergence for the filter

equations (5.20) and (5.21) has been investigated £40). It is shown that

... " .. .- . .... ..
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Figure 5.1. Decentralized Nash game with constrained policy.
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if u(t) is a white noise process, then the estimates will yield a correct

description of the input-output data. Conceivably, in a multivariable

system, there may be different sets of estimates that yield the same

description of the system. Hence, suitable identifiability condition of

the system is required to ensure proper convergence of the adaptive

scheme. Identifiability conditions for multivariable systems has been

i. . investigated in [30, 55].

-. !5.4 Extended Static Decentralized Nash Game

In this section, we will solve the known parameter case by applying

results in [11, 12) to our present problem. Then the estimation scheme

(5.18)-(5.22) is used to obtain explicitly the system parameters which

are then substituted into the optimal policy derived from the known para-

S meter case.

Before utilizing the results in static Nash games, reformulation of

the problem into the appropriate setting is required. The cost function

in (5.11) is rewritten in the form

S'- J Eu i u(t) + 2 (t)D u(t) + 2 T (t)C ui(t)5,

(5.23)

7 i,j 1,2
wd

with D as defined in (5.6) and (5.7) and
4 ~Lj

'Pj
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m1

.! 
T 

(5.24a)

101 
M2

Tm
C2  " (5.24b)2T 

0

where m, -dimension uL and

"~t (5.25)
'x 2 (t)

where

- -1 rn

(.) - T ~ r t'+a(q-l)y(t' + -I~lu
.. "" "''xi t o ii 0 j [jaO0 J()(q j1 J yi B+ ( )u (t)

+ BUJ j(t) + DL - yi(t+l)] + R ui(t-l)

(5.26)Sij 
- 1,2

Notice that in xi(t), the term (Bo)±iQiaOyi(t) is the current measurement

that is available only to the i-th decision-maker at time t. The other

terms in x(t) are dependent on past input-output data that are available

to every decision-maker under the "one-step-delay sharing pattern". Hence,

xi(t) can be considered as information that is privileged to the i-th

controller only.
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5.4.1 Extended Static Decentralized Nash Solution

Consider x(t) as the state vector in a state-space representation of

a system in which the i-th controller has zi(t) as his measurement. The

measurement zi(t) is given by

zi(t) Hix(t) + vi(t) , i 1,2 (5.27)

where

H -[I 0 )3ml (5.28a)

H 2 - i 1 m2  (5.28b),.: '.
, -I m 2

and vi(t) is zero mean white noise with positive semidefinite covariances

T i - 1,. To utilize results in £12], the mean value of 1(t), 1(t)

and the covariance of x(t), cov~x(t) are also required. We illustrate
.4

here how i(t) and cov(x(t)1 can be computed. At time t, past input-

p output data are known, thus

.. .'(t) (t))
,.., , ,

T -4( - )--t

(BoiiQi+y(t) +a(q )y(t) + Bil(q' )ui(t)

+ Bij(q ')u (t) + Di - y (t+l)] + Riui(t-l)
j (5.29)

i,j -1,2

i j

where yi(t) " E(yi(t) ) and yi is given by
.4...

.%
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.

yi(t) - a(q )yi(t-1) + Bii(q )u1 (t-1)

+ Bj(q- )u (t-1) + D, i,j - 1,2 . (5.30)
i j

Let the cov(x(t)) - Q, then

Q - E([x(t) - X(t)][x(t) - (t)]T)

or

(B O)TlQlao(yl(t) _ Yl(t) T y1 (t))
1 

0 1 1 1 (y(t) -

Q E
(B0)T 2Q2a0(Y2 (t) Y2t (B0) 2Qa0 (Y2 (t) Y2(t))

or

FT T1
2 I2(B0)11QlWllQlQ(Bo)l (B0)1 1QiWl2Q2 (B0 )22

- 0  (B)T TB j (5.31) (B
O) 22Q2W21Ql (BO) 11  (Bo) 2 Q2W2 2Q2 (B) 22

where W denotes the i,j-th block of the noise covariance matrix W and

the fact that

E((yi(t) - -yi(t))(Yj(t) - yi(t)T W 1  (5.32)

has been used.

We are now ready to apply the result in [12, Theorem 21 to our game

problem.

Theorem 5.2. The condition (5.16) in Theorem 5.1,

(-1 - I
I:-i  jX.,(D 1 1 1 2 D2 2 D2 1 ) < I

+
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K is sufficient for the system (5.1) with cost functions (5.23) to admit a

unique Nash solution. The control law of each decision-maker is given by

.: : ui(t) - Gix(t) + Fi(xi(t) - i(t)) , i 1,2 (5.33)

with

[G i -I D_ - -1 --1[ -

iiijj ii i  ijiji

(5.34)

ij 1,2
i j

-- fi: "xi(t) = .x(t) lzi(t) ]

T T -1zi -
" 1(t) + QHi(HiQHi + Ti) (t) - Hix(t))

i- 1,2 (5.35)

and F1 is the unique solution to

F1 + PFL M (5.36)

- where

.1 " i ! ' P - -DI D2D22D2 (5.37)

T T + -1 T,2T lL QH1 (HlQH1  Tl) H1QH2(H2Q"2 + T2) H2  (5.38)

- -- 1 - T T + T 1 (5.39)

1-D11 C + D11 D1 2D2 2 2QH 2(H2QH2  T2 ) •9

and
:'- i-" -1 T T T)-1.D2 2

F2  D22 D21 F QH (HQHI + T1 ) H1 - 1 - (5.40)

' Proof. See proof of Theorem 2 in E12].

.J "..

. V U .' .
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There is a close resemblance of Theorems 5.1 and 5.2. In both cases,

the control ui(t) is affine in yi(t). Moreover, as in Theorem 5.1, the

gains for the information, Fi, is dependent upon the system parameters

a 0 and B0 but not the rest of a(z) or B(z).

Notice that in the formulation of the problem in (5.27), white noise

sequence tvi(t)1 have been introduced into the system. We may consider

this disturbance as measurement error of yi(t) and/or noise in transmitting

past input-output data. On the other hand, if no such noise is allowed

into the system (Ti - 0), it is, intuitively, reasonable to expect

Theorems 5.1 and 5.2 to generate the same optimal policy. In fact, the

presence of a positive definite Ti during the formulation stage is to

ensure that the matrices (HiQHi + Ti), i - 1,2 are non-singular. If we assume

Q is positive definite, by nature of the definition of Hi, the problem of

singularity can be avoided.

5.4.2 Self-Tuning Extended Static Decentralized Nash Games

In order to avoid the possibility of non-existence of solutions, we

assume the system parameters a0 and B are known while the rest of a(z),

B(z) and D are unknown. As in the previous approach, the system para-

meters are estimated recursively using equations (5.19)-(5.22) assuming

identical algorithm and initial conditions for all decision-makers. The

estimates are then substituted into the equations of Theorem 5.2 in place

of the true parameters to obtain the optimal strategy. Hence, convergence

of this Nash policy depends on the convergence of the estimates, as

commented previously in Section 5.3.2.

A block diagram of the closed-loop system is shown in Figure 5.2.

It is obvious that the two different approaches are almost identical
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except for the noise sequences (vi(t)) (i - 1,2) that are introduced in

the second method.

5.5 Simulation Studies and Conclusion

The economic system presented in Section 3.4 is used to demonstrate

the performance of the algorithm. We assume the government who controls

u 1 (t) has the consumption expenditure yl(t) as its measurement and the

Federal Reserve System who controls u2 (t) has the private investment

y2 (t) as its measurement. Although this phenomenon may not be entirely

realistic, we can interpret this case as a situation in which the govern-

ment places a strong emphasis on the current consumption while the FRS

focuses its entire energy on ensuring the targeted path of current invest-

ment is followed. The cost functions weighting matrices are given by

Q, 5 R -0.02

Q 10 R2 -0.08.

The same noise covariance used in previous simulations is used. The same

nominal yr in previous cases is used.

Simulation results indicate that both adaptive procedures can indeed

stabilize the system along the targeted growth path. The input-output

time responses of a typical run using the extended static Nash game

approach (with Ti = 0) are shown in Figures 5.3a-5.6a and the corresponding

*trajectories using the constrained policy approach are shown alongside in

Figures 5.3b-5.6b. The two sets of input-output responses indicate the

two methods generate exactly the same optimal policy. Hence, it is reason-

able to assume the two methods are equivalent. There may be situations in
.*

4 . -.. : ..:IS I+'. -" i-/ . + - - -+- - .'" / - - / . + ,"..+. .+ ,. -
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Figure 5.4a. Time response of y2 using extended static game.
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Figure 5.4b. Time response of y2 using constrained policy.
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Figure 5.5a. Time response of u1 using extended static game.
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u 2

Figure 5.6a. Time response of u2 using extended static game.

-S. U2

Figure 5.6b. Time response of u 2 using constrained policy.
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which the constrained approach may offer simpler computations, and thus

hold an edge over the theoretical by solid but cumbersome extended static

game approach. We can use this constrained approach with peace of mind

if we know there does exist a theoretical basis for the policy structure.

The input-output responses of the same run with all the parameters

known are shown in Figures 5.7 and 5.8. The algorithms perform satis-

-factorily when all the parameters are known, which is particularly evident

during the start up period. To compare the error in the optimal policy,

we let uk(t) denote the controls obtained with known parameters and un (t)

"' *.:denote the policy obtained with unknown parameters. The quantity

eu (t) - Uk(t) - un(t) - Ceu(t)eu(t)]T is shown in Figure 5.9. We see
1..2

that the policy error eu(t) seems to be a zero mean quantity, which

indicates the algorithms are providing good controls even though the

parameter estimates in the simulation are far from converging.

.;

*4 *4

,4. 4, ."

44 '
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• . -,Figure 5.8a. Time response of uI with known parameter.
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"7  CHAPTER 6

CONCLUSION

- ,In this report, steady-state solutions are obtained for the

Ooptimization of stochastic systems with unknown parameters and multiple

decision-makers each having his own objective. The solutions obtained

for these systems, or games, have the advantage of simplicity and easy

implementation and thus lend themselves to possible applications in a

variety of actual systems.

Two types of centralized stochastic adaptive games are considered:

the Nash game problem and the Leader-Fllower game problem. The resulting

. adaptive solutions for these games can be classified as those of the

implicit self-tuning type. It is established in this report that by a

judicious transformation, these game solutions can be made to resemble

closely the implicit self-tuning solution for the single-controller

single-objective case, thus endowing them with the desirable property of

simple implementation. In addition, convergence of these game problems

is established utilizing this close resemblance.

In Chapter 5, we proposed two explicit self-tuning type methods for

* decentralized stochastic adaptive Nash games under the "one-step-delay

..information sharing pattern". The first method is an ad hoc constraint

on the policy form while the second one is an extension of static Nash

game theory. Simulation results show that both methods generate identical

optimal policy and indicate that the two algorithms may be equivalent.

Even though results from simulation are satisfactory, a theoretical basis

for convergence of the decentralized Nash game problem still needs to be

established.

,7
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All the methods used in this report to deal with unknown parameters

have been of the certainty equivalent types. Future research into this

area may include combination of the present approach with some other

methods that will take into account the inaccuracies of the estimates.

Another area related to the estimates is the use of different estimation

schemes by different controllers, thus leading to the problem of multi-

modeling.

.. *%'

*4-:.

n*.
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APPDIDIX A

TRANSFORMATION OF SYSTEM

Given a system governed by

A(q ')y(t) - B(q 1)u(t-k-l) + C(q' I)e(t) + D (A.)

where D is a constant offset vector and A(z), B(z), C(s) are matrix

polynomials. The vectors y(t), u(t), e(t) and D are all of the same

dimension. Let a(z) be the scalar polynomial formed by taking the

determinant of A(z) and let A(z) represent the adjoint of A(z). Hence,

the inverse of A(z), A"1 is given by

A'- (. . (A.2)a(z)

Premultiplying (A.A) by a(z)A 1(z) yields

a(q 1)y(t) - A(q 1)B(q I)u(t-k-1) + !(ql )C(q' )e(t)

+ A(q'1)D

or
a(q' )y(t) a (q 1)u(t-k-1) + C(q 1)e(t) + D (A.3)

where B(z) - Z(x)B(z), C(z) - ,(z)C(z) and D - A(l)D. The resulting

system (A.3) has a scalar polynomial operating on y(t).
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APPENDX B

PROOF OF THEOREN 3.1

Consider the system governed by

a(q'1)y(t) - B(q'1)u(t-k-1) + C(q 1 )e(t) + D (B.1)

The cost function J associated with the i-th controller is given by

J, M E 7y(t+k+l) -yr (t44+)]TQL[y(t+k+l) _ yr(t+k+1)]

+ [u(t) u(t-I)]TRLIu) - U(t-,)] , (B.2)

i - 1,2

From the proof in Theorem 2.1, we can transform (3.1) into the following

prediction model form

.' (* c(q')y *(t+k+llt) - G(q )C(q ')y(t) + F(q)C.(q1 )B(q 1 )u(t)

+ F(q' )C-'')D (B.3)

where

y (t+k+llt) - y(t+k+l) - F(q I)e(tk+l) . (B.4)
'4 a* Ji*

Assuming the existence of - , we substitute y into (B.2) and set
ui~t

-J ) to zero to obtain
JU i (t)

0 *
-B (y ti) t yrt+)

+ T (i)

*, a.-t u t 1 l 2 *eN s ( .4.)
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Stacking up the N equations in (B.5), we have

0 - M(y*(t+k+l It) - yr(t+kl)) + H(u(t) - u(t-l)) (B.6)

where M and H are defined in (3.9e) and (3.9f) respectively. Multiply

(B.6) by 7(z) and combining the resulting equation with (B.3), we have

HG(q- )e.q' )y(t) + EMF(q' )C(q 1)B(q 1) + (l-q' 1)c(q ')Hlu(t)

-1 -1 - -1 r+ MF(q )C q )D -c(q )My (t+k+l) 0

as stated in the theorem.

N Ir| q , ' : ';' .;:.;;:;; . ' . -; .;' '*.;'..
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APPENDIX C

U ECONOMIC ODEL

'4The economic model used for the simulation study is taken from [15,

pp. 272). It is given in the following form

Ct - 0 .9266C t. - 0.02031 t-l+ 0.319G t

+ 0.4206Mt - 63.2386 (C.1)

it M 0.1527C t1 + 0 .38061t.1 - 0.0735Gt

+ 1.53SHt - 210.8994 (C.2)

where Ct denotes consumption expenditures, It is private investment

expenditure, Gt is government expenditure and t is the money supply.

Let yl(t) - Ct, Y2(t) - It, ul(t-l) - Gt, and u2 (t-1) - M t . We

assume the current Gt and Mt are the result of, and equal to, the desired

levels that were specified in the previous time step, thus the time lag

in the definition of u1 and u2 £46). The resulting model in terms of y

and u is given in the following matrix polynomial form

(0F.9266 -0.0203F 0.3190 0.4206
I !+ q1 y(t) °'. 7 1m0.57 0.3806 -0.0735  1.538

-[63.23861

La.89- (C.3)

Using the transformation technique given in Appendix A, we have the

transformed system
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-2 0.3190 0.4206
1 - 1.3072q + 0.3596q)yt) - 0.0735 1.5380j

+ -0.1199-0.1913' q'1u(t-1) + -34.8887 (C.4)0.1168 -1.3609 I-25.1366

or

a(q I)y(t) - B(q 1)u(t-1) + D . (C.5)

For simulation, we assume the system is perturbed by zero mean white noise

e(t), that is,

a(q 1)y(t) - B(q ')u(t-1) + D + e(t) (C.6)

with

Ete(t)e T(t)) [1 ]

The weighting mtrices for simulation in Chapters 3 and 4 areQl M 0 15 9 °00.
2 0.

Q2 =  0' R2 0 0.

All input-output variables are in billions of dollars and each time

step t is one quarter.



APPEnDI D

PROFO THEOIU 4.*1

Consider the system

.1a(q- )y(t) - B(q- )u(t-k-l) + C(q- )e(t) + D .(D. 1)

The cost function Jassociated with the i th controller is

- Ef.Ey(t+k+1l) (t4,,I4)]TQEy(t4k+l) - y?(t+k+l))

+ Eu(t) -u(t-l))TR ju(t) - u(t-1)]) (D.2)

i - 1,2

From proof in Theorem 2.1, it is possible to arrive at the following

3 prediction model form of (DA ),

E(ql )y * (tI*4.l t) -G(q- )C(q ')y(t) + F(q l)C(q- )B(q- )u(t)

+ F(q- )0.(q- )D (D.3)

where

y *(t44t+l t) -y(t+k+l) - F(q- )e(t+k+l) *(D.4)

The y* is substituted into the cost function (D.2) and the necessary

coadit ion for minimu is then derived as follows.

kOLMairn. J2 is the cost function associated with the follower.

I IThe necessary condition for the follower is

.I
IA
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2

BU2 (t)

-B Q(2)2Ey*(t+k+llt) - yr(t~k+l)]

+ RT ( 2 ) [u(t) - u(t-l)] (D.5)

=-M2[Y* (t+k+lit) _ yr (t+k+1)] + H 2[u(t ) - u(t-1)] .(D.6)

Leader. J1 is the cost function associated with the leader. The

leader optimizes J1 taking into consideration the possible reaction of the

follower. Thus, he will append the follower's optimization equation to

that of his, that is, he will minimize, with respect to u1 and u2 , a

cost function J given by

+ A+T W2 (D.7)
t 2 (t)

where )t is a Lagrange multiplier. The necessary conditions of minimum

for the leader is b)J  - 0, for i - 1,2. For simplicity of derivation,
Bui(t)

we will assume u and u2 to be scalar valued. Hence, we have

B - 0au .(t)
L T(1 r T ,(2) n ()B (0 Cl' y (t4-+klt) - yr (t+k+l)) + t (B0  BM2  + (R22)

0 Q.3 tt + 2 0 2)12)

+- R T( ") [u(t) -u(t-.) ] (D. 8)

and
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"U2(t) r * T(2 ) (1)
B ( 2 ) Q2 Y*(t+k+ - yr(t+k+)] + t 0 ( 2 B0  + (R 2 )2 2 )
B0  0Q2 0 2)22)

+ RT(2)[u(t) - u(t-l)] . (D.9)

Equations (D.6), (D.8), and (D.9) yield
.* ' ' My.(~ ~

"M My (t+k+llt) - yr(t+k+t)] + H[u(t) - u(t-)] - 0 (D.10)

. where M and H are as defined in (4.6e) and (4.6f) respectively.

Combining (D.3) and (D.l0), we have

MG(q' ) q -')Y(t) + EMF(q'I) q1)B(q'1) + (1-q1 )(q-'l)]u(t)

+ MF(q" 1)C(q" )D - c(q" 1)Myr (t+k+l) 0

as given in (4.5) of Theorem 4.1.

.,

K

g
77; i : : : : -; ;.* ~ ~ V .
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APPENDIX E

PROOF OF THEOREM 5.1

Consider the system governed by (5.1)

y(t+l) - a(q )y(t) + B(q )u(t) + e(t+l) + D (E.1)

with the cost functions (5.14)

J" EtuT(t)Diiu (t) + 2uT(t)Di uj(t) + 2y(t)Ciui(t)

+ 2xi(t)ui(t)), I - 1,2. (E.2)

The policy ui is constrained to be of the form

ui(t) - GiYi(t) + gi " (E.3)

Without loss of generality, let us consider J 1, Substituting uI in (E.3)

into J1 yields

T T T T T
J, Ety1(t)GDG11G1y1 (t) 

+ g1D11g1 + 2y(t)GDllgl

T T T
2[yl(t)GD 1 2G2Y2 (t) + YI(t)G D1292

T y(T 1 U (

g1D 2G2Y2 (t) + g1D12g2
] + 2

+ y T(t)C~g +~ x T(t)G y(t) 4+ x T (t)g1 l) (E.4)

Denote

.Eyi(t)yT(t)] - Pij (t) (.5)

E (y1 (t) ] - (t) . (E.6)
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Then, taking expectation of the terms in (E.4), we have

~T T-- T

J1 trace[GDG11G1 P11 (t) + g1D1191 + 2yI(t)G 1D 11g

T -T T T
+ 2G1 D12G2P21(t) + 2y(t)G1D1292 + 2glDl2G2Y2 (t)

+ 2gTD12g2 + 2C1G Pl (t) + 2y-(t)Clg1
9 12 92 1 1 2x1(t(g) Cg

2"(t)G (t) T (E.7)

L The following formulae are then used to evaluate the necessary conditions

for minimum -aj O and - -- 0:

Str[Z3 - NT

Sy trE[ZT] - N

a+ T +

rZ tr[ETZN] - LTZN

: Hence, we have

0 -

-T T -TD1 G Pll(t) + Dl1 GlPll(t) + 2Dllglyl(t) + 2Dl 2G2P2 1 (t)-T 
T T 

-T
+ 2D12 g29y(t) + 2C1Pll(t) + 2x1 (t)y1 (t)

Sor

0 D1 1G 1 11 1(t) + Dlg-T ()+DGP t)+DB 2 YT~
D1gy 1 (t + 1 2 G2 P2 1 (t)2y~t

+ C T, (t) + z ,(t)y(T) ME.)

* I -i
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and

4*;.0 ail

a 2D 1 + 2D4-G1l(t) + 2D12G22(t) + 2D12g2

+ 2C 1 (t) + 2xl(t)

or

0 - D 9 + DtlG Yl(t) + D12G2y2 (t) 4-

+ C l(t) + xl(t) . (E.9)

Similarly, from 2 - 0 and - 2 0 we obtain
-g2 B92

0-~t + DG2P2 (l) + D -T~t
0 D222P22(t) + D2282Y2(t) + D2 GP 12 (t) + D21g1Y2(t)

-~+ CT P()+ x()-T M(E.10)+ C2 P22(t) z2(t)D(t) (

0 - D2 2 9 2 + D2 2 G2 y2 (t) 4 D2 1G1y 1 (t) 21 1

SC2Y2 (t) + x2 (t) . (E.ll)

Since -(t) and Ety(t)yT(t)) are required to solve for G1, gi (i - 1,2)

in (E.8)-(E.11), we show how these term are computed.

At time t, past u,y are known, then

iij

-4 -*. VI ~.. *- * ** .t
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Ety1 (t))T E(a(q- )y 1 (t-l) +4 Bii(q- )uj(t-l)

+ B 1j(q 1')u i(t-1) + e(t) + D)i

-a(q' )yi(t-1) + Bii(q' )u i(t-1)

Let

P(t) -1 E(y(t)y (t)] -variancefy(t)]
p P 2 1 (t) P 2 2 Mt

Since variance ty(t)Ti - covariancefy(t)Ti + 7(t);T(t), thus

T - -T

- E(e(t). Ti + -Y(t)-Y'(t) (~3

y WIt +-(t)- (E.13

-TPostmultiplying (1.9) by the term yl(t) and subtracting the resulting

equation from (Z.8) yields

CT - -T -

1 -C(P11(t) -y 1(t)yl(t))

or 

T 
( .4

Similarly, if -~t) is postmuiltiplied to (1.11) and then subtracted from

(1.10), the following is obtained
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D2 1GlW1 2 + D22 G2 ,2 2 - C2 22 (E.15)

After some mmnipulations with (E.14) and (E.15), we have

G - LiGiNi -Si , i - 1,2 (E.16)

with
-1 -1

Li  - D D;1 D , i,j - 1,2 (E.17)
I ii ijjjjJi i 0j

N - W W W W, ij - 1,2 (E.18)
L5 Ijj i ii 1 06 ij

-1 T -1 -1 j-I l E 9

Si M -DiiCi + DiiDijDjjCjWjiW £ , iJ 1,2 (E.19)

which is stated in (5.17) of Theorem 5.1. After the Gi's are determined,

91 and 52 can be solved i (E.9) and (E.11) respectively

- 1 -1 - D
9, + D iDijgj I-Dii[DiiGiyi(t) + D1jG-yj(t)

+ CtT(t) + x1(t)) , iJ - 1,2 (E.20)
:i.1

as stated in (5.18) of Theorem 5.1. Sufficient conditions for existence

of solution to (E.16) is discussed in the proof of Theorem 3 in Eli] and

Corollary 1.1 in [12] and is stated in (5.16).

...... .... ..
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